Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Environ Sci Technol Lett ; 10(12): 1159-1164, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38106529

RESUMEN

Nitrogen dioxide (NO2) is a regulated pollutant that is associated with numerous health impacts. Recent advances in epidemiology indicate high confidence linking NO2 exposure with increased mortality, an association that recent studies suggest persists even at concentrations below regulatory thresholds. While large disparities in NO2 exposure among population subgroups have been reported, U.S. NO2-attributable mortality rates and their disparities remain unquantified. Here we provide the first estimate of NO2-attributable all-cause mortality across the contiguous U.S. (CONUS) at the census tract-level. We leverage fine-scale, satellite-informed, land use regression model NO2 concentrations and census tract-level baseline mortality data to characterize the associated disparities among different racial/ethnic subgroups. Across CONUS, we estimate that the NO2-attributable all-cause mortality is ∼170,850 (95% confidence interval: 43,970, 251,330) premature deaths yr-1 with large variability across census tracts and within individual cities. Additionally, we find that higher NO2 concentrations and underlying susceptibilities for predominately Black communities lead to NO2-attributable mortality rates that are ∼47% higher compared to CONUS-wide average rates. Our results highlight the substantial U.S. NO2 mortality burden, particularly in marginalized communities, and motivate adoption of more stringent standards to protect public health.

2.
Ann Epidemiol ; 56: 47-54.e5, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33181262

RESUMEN

PURPOSE: To describe coronavirus disease 2019 (COVID-19) mortality in Chicago during the spring of 2020 and identify at the census-tract level neighborhood characteristics that were associated with higher COVID-19 mortality rates. METHODS: Using Poisson regression and regularized linear regression (elastic net), we evaluated the association between neighborhood characteristics and COVID-19 mortality rates in Chicago through July 22 (2514 deaths across 795 populated census tracts). RESULTS: Black residents (31% of the population) accounted for 42% of COVID-19 deaths. Deaths among Hispanic/Latino residents occurred at a younger age (63 years, compared with 71 for white residents). Regarding residential setting, 52% of deaths among white residents occurred inside nursing homes, compared with 35% of deaths among black residents and 17% among Hispanic/Latino residents. Higher COVID-19 mortality was seen in neighborhoods with heightened barriers to social distancing and low health insurance coverage. Neighborhoods with a higher percentage of white and Asian residents had lower COVID-19 mortality. The associations differed by race, suggesting that neighborhood context may be most tightly linked to COVID-19 mortality among white residents. CONCLUSIONS: We describe communities that may benefit from supportive services and identify traits of communities that may benefit from targeted campaigns for prevention and testing to prevent future deaths from COVID-19.


Asunto(s)
COVID-19/mortalidad , Características de la Residencia , Anciano , Anciano de 80 o más Años , Chicago/epidemiología , Femenino , Humanos , Masculino , Persona de Mediana Edad
3.
Environ Health Perspect ; 128(11): 115001, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33170741

RESUMEN

BACKGROUND: Modeling suggests that climate change mitigation actions can have substantial human health benefits that accrue quickly and locally. Documenting the benefits can help drive more ambitious and health-protective climate change mitigation actions; however, documenting the adverse health effects can help to avoid them. Estimating the health effects of mitigation (HEM) actions can help policy makers prioritize investments based not only on mitigation potential but also on expected health benefits. To date, however, the wide range of incompatible approaches taken to developing and reporting HEM estimates has limited their comparability and usefulness to policymakers. OBJECTIVE: The objective of this effort was to generate guidance for modeling studies on scoping, estimating, and reporting population health effects from climate change mitigation actions. METHODS: An expert panel of HEM researchers was recruited to participate in developing guidance for conducting HEM studies. The primary literature and a synthesis of HEM studies were provided to the panel. Panel members then participated in a modified Delphi exercise to identify areas of consensus regarding HEM estimation. Finally, the panel met to review and discuss consensus findings, resolve remaining differences, and generate guidance regarding conducting HEM studies. RESULTS: The panel generated a checklist of recommendations regarding stakeholder engagement: HEM modeling, including model structure, scope and scale, demographics, time horizons, counterfactuals, health response functions, and metrics; parameterization and reporting; approaches to uncertainty and sensitivity analysis; accounting for policy uptake; and discounting. DISCUSSION: This checklist provides guidance for conducting and reporting HEM estimates to make them more comparable and useful for policymakers. Harmonization of HEM estimates has the potential to lead to advances in and improved synthesis of policy-relevant research that can inform evidence-based decision making and practice. https://doi.org/10.1289/EHP6745.


Asunto(s)
Contaminación del Aire , COVID-19 , Coronavirus , Síndrome Respiratorio Agudo Grave , Cambio Climático , Brotes de Enfermedades , Estudios Epidemiológicos , Humanos , SARS-CoV-2
4.
Sci Rep ; 10(1): 4497, 2020 Mar 06.
Artículo en Inglés | MEDLINE | ID: mdl-32144286

RESUMEN

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Sci Rep ; 9(1): 4204, 2019 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-30862834

RESUMEN

Shoreline erosion can transition freshwater coastal wetlands from carbon sinks to carbon sources. No studies have explored the impacts of coastal geomorphic processes on freshwater wetland carbon budgets. To do so, we modified a saltmarsh carbon budget model for application in freshwater coastal wetlands. We validated the model with data from a shoreline wetland in the Laurentian Great Lakes. The model generates the carbon budget by differencing carbon export and carbon storage. The inputs for carbon storage are the carbon inventory and maximum wetland age. Inputs for carbon export include erosion rates and overwash extent. The model demonstrates that the wetland examined in this study transitioned to a source of carbon during periods of erosion. In fact, the net carbon export between 2015 and 2018 was 10% of the wetland's original carbon stock. This study indicates that geomorphic change can dictate whether and how freshwater coastal wetlands serve as sources or sinks for terrestrial carbon, and that carbon stocks can fluctuate on a geologically rapid timescale. We recommend that such geomorphic processes be considered when developing carbon budgets for these marginal environments. Furthermore, the carbon budget model refined in this study can be used to prioritize wetlands in land management and conservation efforts.

6.
Glob Chang Biol ; 24(10): 4696-4708, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29802780

RESUMEN

Human and natural systems have adapted to and evolved within historical climatic conditions. Anthropogenic climate change has the potential to alter these conditions such that onset of unprecedented climatic extremes will outpace evolutionary and adaptive capabilities. To assess whether and when future climate extremes exceed their historical windows of variability within impact-relevant socioeconomic, geopolitical, and ecological domains, we investigate the timing of perceivable changes (time of emergence; TOE) for 18 magnitude-, frequency-, and severity-based extreme temperature (10) and precipitation (8) indices using both multimodel and single-model multirealization ensembles. Under a high-emission scenario, we find that the signal of frequency- and severity-based temperature extremes is projected to rise above historical noise earliest in midlatitudes, whereas magnitude-based temperature extremes emerge first in low and high latitudes. Precipitation extremes demonstrate different emergence patterns, with severity-based indices first emerging over midlatitudes, and magnitude- and frequency-based indices emerging earliest in low and high latitudes. Applied to impact-relevant domains, simulated TOE patterns suggest (a) unprecedented consecutive dry day occurrence in >50% of 14 terrestrial biomes and 12 marine realms prior to 2100, (b) earlier perceivable changes in climate extremes in countries with lower per capita GDP, and (c) emergence of severe and frequent heat extremes well-before 2030 for the 590 most populous urban centers. Elucidating extreme-metric and domain-type TOE heterogeneities highlights the challenges adaptation planners face in confronting the consequences of elevated twenty-first century radiative forcing.


Asunto(s)
Cambio Climático , Ecosistema , Adaptación Fisiológica , Predicción , Humanos , Tiempo , Tiempo (Meteorología)
7.
Proc Natl Acad Sci U S A ; 114(19): 4881-4886, 2017 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-28439005

RESUMEN

Efforts to understand the influence of historical global warming on individual extreme climate events have increased over the past decade. However, despite substantial progress, events that are unprecedented in the local observational record remain a persistent challenge. Leveraging observations and a large climate model ensemble, we quantify uncertainty in the influence of global warming on the severity and probability of the historically hottest month, hottest day, driest year, and wettest 5-d period for different areas of the globe. We find that historical warming has increased the severity and probability of the hottest month and hottest day of the year at >80% of the available observational area. Our framework also suggests that the historical climate forcing has increased the probability of the driest year and wettest 5-d period at 57% and 41% of the observed area, respectively, although we note important caveats. For the most protracted hot and dry events, the strongest and most widespread contributions of anthropogenic climate forcing occur in the tropics, including increases in probability of at least a factor of 4 for the hottest month and at least a factor of 2 for the driest year. We also demonstrate the ability of our framework to systematically evaluate the role of dynamic and thermodynamic factors such as atmospheric circulation patterns and atmospheric water vapor, and find extremely high statistical confidence that anthropogenic forcing increased the probability of record-low Arctic sea ice extent.


Asunto(s)
Calentamiento Global , Modelos Teóricos
8.
Proc Biol Sci ; 284(1848)2017 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-28179512

RESUMEN

The effect of global climate change on infectious disease remains hotly debated because multiple extrinsic and intrinsic drivers interact to influence transmission dynamics in nonlinear ways. The dominant drivers of widespread pathogens, like West Nile virus, can be challenging to identify due to regional variability in vector and host ecology, with past studies producing disparate findings. Here, we used analyses at national and state scales to examine a suite of climatic and intrinsic drivers of continental-scale West Nile virus epidemics, including an empirically derived mechanistic relationship between temperature and transmission potential that accounts for spatial variability in vectors. We found that drought was the primary climatic driver of increased West Nile virus epidemics, rather than within-season or winter temperatures, or precipitation independently. Local-scale data from one region suggested drought increased epidemics via changes in mosquito infection prevalence rather than mosquito abundance. In addition, human acquired immunity following regional epidemics limited subsequent transmission in many states. We show that over the next 30 years, increased drought severity from climate change could triple West Nile virus cases, but only in regions with low human immunity. These results illustrate how changes in drought severity can alter the transmission dynamics of vector-borne diseases.


Asunto(s)
Cambio Climático , Sequías , Insectos Vectores/virología , Fiebre del Nilo Occidental/epidemiología , Animales , Culicidae/virología , Epidemias , Humanos , Virus del Nilo Occidental
9.
J Geophys Res Atmos ; 121(17): 9911-9928, 2016 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-27840780

RESUMEN

During the winters of 2013-2014 and 2014-2015, anomalously warm temperatures in western North America and anomalously cool temperatures in eastern North America resulted in substantial human and environmental impacts. Motivated by the impacts of these concurrent temperature extremes and the intrinsic atmospheric linkage between weather conditions in the western and eastern United States, we investigate the occurrence of concurrent "warm-West/cool-East" surface temperature anomalies, which we call the "North American winter temperature dipole." We find that, historically, warm-West/cool-East dipole conditions have been associated with anomalous mid-tropospheric ridging over western North America and downstream troughing over eastern North America. We also find that the occurrence and severity of warm-West/cool-East events have increased significantly between 1980 and 2015, driven largely by an increase in the frequency with which high-amplitude "ridge-trough" wave patterns result in simultaneous severe temperature conditions in both the West and East. Using a large single-model ensemble of climate simulations, we show that the observed positive trend in the warm-West/cool-East events is attributable to historical anthropogenic emissions including greenhouse gases, but that the co-occurrence of extreme western warmth and eastern cold will likely decrease in the future as winter temperatures warm dramatically across the continent, thereby reducing the occurrence of severely cold conditions in the East. Although our analysis is focused on one particular region, our analysis framework is generally transferable to the physical conditions shaping different types of extreme events around the globe.

10.
Sci Adv ; 2(4): e1501344, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27051876

RESUMEN

Recent evidence suggests that changes in atmospheric circulation have altered the probability of extreme climate events in the Northern Hemisphere. We investigate northeastern Pacific atmospheric circulation patterns that have historically (1949-2015) been associated with cool-season (October-May) precipitation and temperature extremes in California. We identify changes in occurrence of atmospheric circulation patterns by measuring the similarity of the cool-season atmospheric configuration that occurred in each year of the 1949-2015 period with the configuration that occurred during each of the five driest, wettest, warmest, and coolest years. Our analysis detects statistically significant changes in the occurrence of atmospheric patterns associated with seasonal precipitation and temperature extremes. We also find a robust increase in the magnitude and subseasonal persistence of the cool-season West Coast ridge, resulting in an amplification of the background state. Changes in both seasonal mean and extreme event configurations appear to be caused by a combination of spatially nonuniform thermal expansion of the atmosphere and reinforcing trends in the pattern of sea level pressure. In particular, both thermal expansion and sea level pressure trends contribute to a notable increase in anomalous northeastern Pacific ridging patterns similar to that observed during the 2012-2015 California drought. Collectively, our empirical findings suggest that the frequency of atmospheric conditions like those during California's most severely dry and hot years has increased in recent decades, but not necessarily at the expense of patterns associated with extremely wet years.


Asunto(s)
Atmósfera , Clima , Ecosistema , Lluvia , California , Sequías , Estaciones del Año , Temperatura
11.
Nature ; 522(7557): 465-9, 2015 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-26108856

RESUMEN

Surface weather conditions are closely governed by the large-scale circulation of the Earth's atmosphere. Recent increases in the occurrence of some extreme weather phenomena have led to multiple mechanistic hypotheses linking changes in atmospheric circulation to increasing probability of extreme events. However, observed evidence of long-term change in atmospheric circulation remains inconclusive. Here we identify statistically significant trends in the occurrence of atmospheric circulation patterns, which partially explain observed trends in surface temperature extremes over seven mid-latitude regions of the Northern Hemisphere. Using self-organizing map cluster analysis, we detect robust circulation pattern trends in a subset of these regions during both the satellite observation era (1979-2013) and the recent period of rapid Arctic sea-ice decline (1990-2013). Particularly substantial influences include the contribution of increasing trends in anticyclonic circulations to summer and autumn hot extremes over portions of Eurasia and North America, and the contribution of increasing trends in northerly flow to winter cold extremes over central Asia. Our results indicate that although a substantial portion of the observed change in extreme temperature occurrence has resulted from regional- and global-scale thermodynamic changes, the risk of extreme temperatures over some regions has also been altered by recent changes in the frequency, persistence and maximum duration of regional circulation patterns.


Asunto(s)
Movimientos del Aire , Calentamiento Global/estadística & datos numéricos , Temperatura , Regiones Árticas , Asia , Análisis por Conglomerados , Europa (Continente) , Congelación , Cubierta de Hielo , América del Norte , Estaciones del Año , Termodinámica
12.
Nat Clim Chang ; 4: 698-703, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25309627

RESUMEN

Poor air quality causes an estimated 2.6 to 4.4 million premature deaths per year1-3. Hazardous conditions form when meteorological components allow the accumulation of pollutants in the near-surface atmosphere4-8. Global warming-driven changes to atmospheric circulation and the hydrological cycle9-13 are expected to alter the meteorological components that control pollutant build-up and dispersal5-8,14, but the magnitude, direction, geographic footprint, and public health impact of this alteration remain unclear7,8. We utilize an air stagnation index and an ensemble of bias-corrected climate model simulations to quantify the response of stagnation occurrence and persistence to global warming. Our analysis projects increases in stagnation occurrence that cover 55% of the current global population, with areas of increase affecting 10 times more people than areas of decrease. By the late-21st century, robust increases of up to 40 days per year are projected throughout the majority of the tropics and subtropics, as well as within isolated mid-latitude regions. Potential impacts over India, Mexico, and the western U.S. are particularly acute due to the intersection of large populations and increases in the persistence of stagnation events, including those of extreme duration. These results indicate that anthropogenic climate change is likely to alter the level of pollutant management required to meet future air quality targets.

13.
Environ Res Lett ; 7(4)2012.
Artículo en Inglés | MEDLINE | ID: mdl-23284587

RESUMEN

Stagnant atmospheric conditions can lead to hazardous air quality by allowing ozone and particulate matter to accumulate and persist in the near-surface environment. By changing atmospheric circulation and precipitation patterns, global warming could alter the meteorological factors that regulate air stagnation frequency. We analyze the response of the National Climatic Data Center (NCDC) Air Stagnation Index (ASI) to anthropogenically enhanced radiative forcing using global climate model projections of late-21(st) century climate change (SRES A1B scenario). Our results indicate that the atmospheric conditions over the highly populated, highly industrialized regions of the eastern United States, Mediterranean Europe, and eastern China are particularly sensitive to global warming, with the occurrence of stagnant conditions projected to increase 12-to-25% relative to late-20(th) century stagnation frequencies (3-18+ days/year). Changes in the position/strength of the polar jet, in the occurrence of light surface winds, and in the number of precipitation-free days all contribute to more frequent late-21(st) century air mass stagnation over these high-population regions. In addition, we find substantial inter-model spread in the simulated response of stagnation conditions over some regions using either native or bias corrected global climate model simulations, suggesting that changes in the atmospheric circulation and/or the distribution of precipitation represent important sources of uncertainty in the response of air quality to global warming.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...